Combination of the bioreductive drug tirapazamine with the chemotherapeutic prodrug cyclophosphamide for P450/P450-reductase-based cancer gene therapy.
نویسندگان
چکیده
Tirapazamine (TPZ) is a bioreductive drug that exhibits greatly enhanced cytotoxicity in hypoxic tumor cells, which are frequently radiation-resistant and chemoresistant. TPZ exhibits particularly good activity when combined with alkylating agents such as cyclophosphamide (CPA). The present study examines the potential of combining TPZ with CPA in a cytochrome P450-based prodrug activation gene therapy strategy. Recombinant retroviruses were used to transduce 9L gliosarcoma cells with the genes encoding P450 2B6 and NADPH-P450 reductase. Intratumoral coexpression of P450 2B6 with P450 reductase sensitized 9L tumor cells to CPA equally well under normoxic (19.6% O2) and hypoxic (1% O2) conditions. The P450 2B6/P450 reductase combination also sensitized 9L tumor cells to TPZ under both culture conditions. Interestingly, bystander cytotoxic effects were observed for both CPA and TPZ under hypoxia. Furthermore, TPZ exerted a striking growth-inhibitory effect on CPA-treated 9L/2B6/P450 reductase cells under both normoxia and hypoxia, which suggests the utility of this drug combination for P450-based gene therapy. To evaluate this possibility, 9L tumor cells were transduced in culture with P450 2B6 and P450 reductase and grown as solid tumors in severe combined immune deficient mice in vivo. Although these tumors showed little response to TPZ treatment alone, tumor growth was significantly delayed, by up to approximately four doubling times, when TPZ was combined with CPA. Some toxicity from the drug combination was apparent, however, as indicated by body weight profiles. These findings suggest the potential benefit of incorporating TPZ, and perhaps other bioreductive drugs, into a P450/P450 reductase-based gene therapy strategy for cancer treatment.
منابع مشابه
Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer.
Cancer chemotherapeutic prodrugs, such as the oxazaphosphorines cyclophosphamide and ifosfamide, are metabolized by liver cytochrome P450 enzymes to yield therapeutically active, cytotoxic metabolites. The effective use of these prodrugs is limited by host toxicity associated with the systemic distribution of cytotoxic metabolites formed in the liver. This problem can, in part, be circumvented ...
متن کاملCytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer.
Several commonly used cancer chemotherapeutic prodrugs, including cyclophosphamide and ifosfamide, are metabolized in the liver by a cytochrome P450 (CYP)-catalyzed prodrug activation reaction that is required for therapeutic activity. Preclinical studies have shown that the chemosensitivity of tumors to these prodrugs can be dramatically increased by P450 gene transfer, which confers the capab...
متن کاملFrequent, moderate-dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P-450 reductase-based cancer gene therapy.
Transduction of tumor cells with a cyclophosphamide (CPA)-activating cytochrome P-450 (P450) gene provides the capacity for localized prodrug activation and greatly sensitizes solid tumors to CPA treatment in vivo. The therapeutic impact of this P450-based cancer gene therapy strategy can be substantially enhanced by cotransduction of P450 reductase, a rate-limiting component of P450-dependent ...
متن کاملEnhanced antitumor activity of P450 prodrug-based gene therapy using the low Km cyclophosphamide 4-hydroxylase P450 2B11.
Gene therapy using the prodrug-activating enzyme P450 2B6 has shown substantial promise in preclinical and initial clinical studies with the P450 prodrugs cyclophosphamide and ifosfamide. We sought to optimize this therapy using the canine P450 enzyme 2B11, which activates cyclophosphamide and ifosfamide with Km of 80 to 160 micromol/L, approximately 10- to 20-fold lower than the Km of P450 2B6...
متن کاملHypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: reversing tumor radioresistance and effecting cure.
Solid tumors are characterized by regions of hypoxia that are inherently resistant to both radiotherapy and some chemotherapy. To target this resistant population, bioreductive drugs that are preferentially toxic to tumor cells in a hypoxic environment are being evaluated in clinical trials; the lead compound, tirapazamine (TPZ), is being used in combination with cisplatin and/or with radiother...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 14 شماره
صفحات -
تاریخ انتشار 2000